This guide covers performance optimization strategies for Arches, including database tuning,
application optimization, caching strategies, and monitoring best practices.
-- Essential indexes for performanceCREATE INDEX idx_users_email ON users (email);CREATE INDEX idx_organizations_slug ON organizations (slug);CREATE INDEX idx_members_org_user ON organization_members (organization_id, user_id);CREATE INDEX idx_content_org_created ON content (organization_id, created_at DESC);CREATE INDEX idx_workflows_org_status ON workflows (organization_id, status);
# postgresql.conf optimizationsshared_buffers = 256MB # 25% of RAMeffective_cache_size = 1GB # 50-75% of RAMmaintenance_work_mem = 64MBcheckpoint_completion_target = 0.9wal_buffers = 16MBdefault_statistics_target = 100random_page_cost = 1.1 # For SSD storageeffective_io_concurrency = 200 # For SSD storagework_mem = 4MBhuge_pages = try
pgvector Optimization
Code
-- Optimize vector search performanceCREATE INDEX ON content USING ivfflat (embedding vector_cosine_ops)WITH (lists = 100);-- Tune for accuracy vs speedSET ivfflat.probes = 10;-- Increase for better accuracy-- Parallel vector searchSET max_parallel_workers_per_gather = 4;SET max_parallel_workers = 8;
Application Performance
Go Performance Best Practices
Memory Management
Code
// Use sync.Pool for frequently allocated objectsvar bufferPool = sync.Pool{ New: func() interface{} { return make([]byte, 1024) },}func ProcessData(data []byte) { buf := bufferPool.Get().([]byte) defer bufferPool.Put(buf) // Use buffer}
Concurrent Processing
Code
// Efficient worker pool patternfunc WorkerPool(jobs <-chan Job, results chan<- Result) { var wg sync.WaitGroup workers := runtime.NumCPU() for i := 0; i < workers; i++ { wg.Add(1) go func() { defer wg.Done() for job := range jobs { result := processJob(job) results <- result } }() } wg.Wait() close(results)}