Features
Content Management
Overview
Arches's Content Management system provides comprehensive artifact storage, vector embeddings for semantic search, and intelligent content processing pipelines.
Core Features
Artifact Storage
- Multi-format Support: Documents, images, videos, structured data
- Version Control: Track content changes over time
- Metadata Management: Rich metadata and tagging
- Cloud Storage: S3-compatible object storage integration
Vector Embeddings
- Semantic Search: Find content by meaning, not just keywords
- Multiple Models: Support for OpenAI, Cohere, and custom embeddings
- pgvector Integration: PostgreSQL vector similarity search
- Hybrid Search: Combine vector and traditional search
Content Processing
- Automatic Extraction: Text, metadata, and structure extraction
- Format Conversion: Convert between document formats
- Thumbnail Generation: Automatic preview generation
- Content Enrichment: AI-powered tagging and categorization
Architecture
Content Model
Code
Storage Architecture
Code
Content Operations
Upload and Storage
Code
Search Functionality
Semantic Search
Code
Hybrid Search
Code
Processing Pipeline
Code
Vector Embeddings
Embedding Generation
Code
Similarity Search
Code
Embedding Models
OpenAI
- Model: text-embedding-ada-002
- Dimensions: 1536
- Best for: General purpose
Cohere
- Model: embed-english-v3.0
- Dimensions: 1024
- Best for: Domain-specific
Custom Models
- Sentence Transformers
- Domain-trained models
- Fine-tuned embeddings
Processing Capabilities
Document Processing
Text Extraction
- PDF text extraction with OCR
- Word document parsing
- HTML content extraction
- Markdown processing
Metadata Extraction
- Author information
- Creation/modification dates
- Document properties
- Custom metadata fields
Image Processing
Analysis
- Object detection
- Face detection
- OCR for text in images
- EXIF data extraction
Transformation
- Thumbnail generation
- Format conversion
- Compression
- Watermarking
Video Processing
Extraction
- Frame extraction
- Audio transcription
- Scene detection
- Metadata parsing
Generation
- Preview clips
- Thumbnails
- Transcripts
- Subtitles
API Endpoints
Content Management
POST /api/v1/content
- Upload contentGET /api/v1/content/:id
- Get content detailsPUT /api/v1/content/:id
- Update content metadataDELETE /api/v1/content/:id
- Delete contentGET /api/v1/content/:id/download
- Download content
Search
POST /api/v1/content/search
- Search contentGET /api/v1/content/similar/:id
- Find similar contentPOST /api/v1/content/query
- Advanced query
Processing
POST /api/v1/content/:id/process
- Trigger processingGET /api/v1/content/:id/status
- Processing statusPOST /api/v1/content/:id/extract
- Extract specific data
Embeddings
POST /api/v1/content/:id/embed
- Generate embeddingGET /api/v1/content/:id/embedding
- Get embeddingPUT /api/v1/content/:id/embedding
- Update embedding
Storage Configuration
S3 Configuration
Code
Local Storage
Code
Performance Optimization
Caching Strategy
Redis Cache
Code
CDN Integration
- CloudFront for static content
- Edge caching for thumbnails
- Geo-distributed content delivery
Database Optimization
Indexes
Code
Processing Optimization
- Async processing queues
- Parallel extraction
- Batch embedding generation
- Incremental indexing
Security
Access Control
- Row-level security
- Content encryption at rest
- Signed URLs for downloads
- IP-based restrictions
Data Protection
- Automatic PII detection
- Content sanitization
- Virus scanning
- DLP integration
Audit Trail
Code
Integration
Workflow Integration
- Content as workflow triggers
- Processing pipelines
- Automated tagging
- Content routing
External Systems
- SharePoint connector
- Google Drive sync
- Dropbox integration
- Box.com support
APIs and Webhooks
Code
Monitoring
Metrics
- Upload/download rates
- Processing queue depth
- Search response times
- Storage utilization
- Embedding generation time
Health Checks
- Storage connectivity
- Database performance
- Processing worker status
- Cache hit rates
Best Practices
Content Organization
- Use consistent naming conventions
- Apply comprehensive tagging
- Maintain metadata standards
- Regular cleanup procedures
Search Optimization
- Pre-generate embeddings
- Use appropriate embedding models
- Optimize vector dimensions
- Cache frequent queries
Storage Management
- Implement lifecycle policies
- Use appropriate storage tiers
- Regular backup procedures
- Monitor storage costs
Troubleshooting
Common Issues
Slow Search Performance
- Check pgvector indexes
- Verify embedding dimensions
- Review query complexity
- Monitor database load
Processing Failures
- Check file format support
- Verify processing worker status
- Review error logs
- Check resource limits
Storage Issues
- Verify S3 permissions
- Check storage quotas
- Review lifecycle policies
- Monitor bandwidth usage
Related Documentation
- Workflows - Content processing workflows
Last modified on